(2-p)(2-p)+p^2=10

Simple and best practice solution for (2-p)(2-p)+p^2=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2-p)(2-p)+p^2=10 equation:



(2-p)(2-p)+p^2=10
We move all terms to the left:
(2-p)(2-p)+p^2-(10)=0
We add all the numbers together, and all the variables
p^2+(-1p+2)(-1p+2)-10=0
We multiply parentheses ..
p^2+(+p^2-2p-2p+4)-10=0
We get rid of parentheses
p^2+p^2-2p-2p+4-10=0
We add all the numbers together, and all the variables
2p^2-4p-6=0
a = 2; b = -4; c = -6;
Δ = b2-4ac
Δ = -42-4·2·(-6)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8}{2*2}=\frac{-4}{4} =-1 $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8}{2*2}=\frac{12}{4} =3 $

See similar equations:

| (2v-5v)÷3=1 | | x^2=4*10^(-7)*(0.0095-x) | | 46000=(((2x-4.125)/(1.5))^(2)((x-0.2215)/(1.5)))/(((2x)/(1.5))^(2)) | | 3x+4=2x-5=0 | | 3x+42x-5=0 | | 2*(x+7)=225 | | (2-q)(2-q)+q^2=10 | | 0.6xX=168 | | 3/5•n=27 | | 4D^2+4D+5y=0 | | 3(y-8)=24 | | 8x+5=7-6x | | 3y-20=73y=7+203y=27y=9 | | p+75=110 | | (x/9)=11/5 | | 24+2a+7=13 | | (2x+6)(5x+15)=0 | | (7x+7)(3x+3)=0 | | X-3-7x=2x-5 | | 10y/6=9,4y | | 10,84=x*x² | | X*2x=10,84 | | 4÷x+8=0 | | (X*5)+(2*y)=300 | | 30x=57x | | 12x^2+5x=-21 | | X^2-5x+2=10+2x | | 10x=9,4x | | 6(n-5)=12 | | 2/n=(n+30 | | 2x=15+(x+10) | | 2A+b=80 |

Equations solver categories